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Framework for Automated Vehicle Benefits
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O Focus on the relationship between the vehicle operations and energy/emissions

0 Connected a traffic microsimulation software (PTV Vissim) with EPA’s emission
inventory model for highway vehicles (MOVES)
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Three-Layered Modeling Framework

Automated Vehicle Technologies in Driving Behavior Models

Adaptive Cruise Cooperative Adaptive
Control (ACC) Cruise Control (CACC)

Microscopic Traffic Simulation Models

i.e. PTV Vissim, Aimsun, INTEGRATION

Modal Vehicle Emissions Models

MOVES CMEM VT-Micro

Speed Harmonization Platooning
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https://www.sae.org/misc/pdfs/automated_driving.pdf

Modeling Approach

Produce 15 random Vissim seeds from speed distribution

Roadway

Roadway length and
width, Vehicle routes,
Vehicle demand
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Vehicle model, Speed
distribution, Vehicle
volume
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Comparison of Results e
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Real-world Data

* Process Vissim output to create operating mode distributions
Apply Vissim modeled roadway network in MOVES
Run MOVES model and analyze emission results

Meteorological Data

Temperature,
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Emissions Rates/
Energy
Consumption
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Scenario Development

0 Modeled passenger cars on Interstate 91 northbound near
Springfield, MA
= Speeds and traffic volumes from MassDOT

a Modified CACC Driver Model DLL from Turner-Fairbank
Highway Research Center (FHWA)

= Does not include platooning, lane change, or designated lane

O Ran three different microsimulation scenarios in Vissim:
1) Baseline with default Wiedemann 99 car-following algorithm
2) All vehicles using CACC driver model
3) Default Wiedemann 99 algorithm with traffic oscillations set to zero
O MOVES project-level energy and emissions calculated on a per
vehicle basis for each scenario
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Weidemann Car Following

0 A closer following headway

0 The reduction of oscillations in driver car following behavior
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Capri (2012), International Journal of Traffic and Transportation Engineering
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http://article.sapub.org/10.5923.j.ijtte.20120103.03.html

Map ofI 91 Network
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Input 1-91 Traffic Speeds and Volumes

Cumulative Distribution Function of Speeds on 1-91 Input Volumes for 1-91
Northbound in April 2017 N
Northbound Network
100% o
%
90% . 5. Locale_ID: R15510
Q"‘*. Volume: 92
80% \‘M 4. Locale_ID: R15509
.. Volume: 351
70% S,
AN
60% i
50% \<
40%
\\Eﬁ
30% ()
\
0% e
\‘-‘""’ /!
6. Locale_ID: 236286_NB !
10% v : /| 3.Locale_ID: $14-061-281-24
olume: 1,045 i
Volume: 700
0%
40 45 50 55 60 65 70 75 80 85 i 2. Locale_ID: 252152
Speed (mph) ' Volume: 714
—&— Input Cumulative Distribution =@=Normal Cumulative Distribution g 1. Locale ID: 26 NB

Volume: 2,562

R Volse o



Network Performance

* Box plots of speeds for each link
« 25 percentile, median, 75t percentile, mean (red dot)
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MOVES Operating Modes

0 Vehicle-specific power (VSP) and
emissions are well correlated

Q VSP is derived from instantaneous
speed and acceleration along with
other constants such as vehicle
mass and aerodynamic drag

=  Microsimulations run at 10 Hz

0O MOVES operating modes assigned
according to VSP and speed bins

= Separate op modes for braking (opModelD
0) and idling (opModelD 1)

Operating Modes for Running Emissions

Speed Class (mph)

VSP Class (kW/tonne)

30 +
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Beardsley (2011), MOVES Workshop
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http://article.sapub.org/10.5923.j.ijtte.20120103.03.html

Vehicle-Specific Power (VSP)

2 3
P, = Av, + Bv, +Cv, + mv,a, Equation 1-2

m

In this form, V5P (Pv,:, kW/Mg) 1s estimated in terms of vehicles™
o speed at ime ¢ (ve, m/sec),
e acceleration a,, defined as v, — v..., (m/sec?)
e -mass m(Mg) (usually referred to as “weight,”),

e - track-road load coefficients 4, B and C, representing rolling resistance, rotational

resistance and aerodynamic drag, in units of kW-sec/m, kW-sec’/m” and kW-sec%mﬂ
respectively .’

MOVES2014 LDV Emissions Technical Report
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https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P100NNVN.pdf
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Energy Rate (MMBTU/veh/hr)

Link-Level Emission and Energy Impacts
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Energy Rate (MMBTU/veh/hr)

Network Emissions and Energy Impacts
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NOx VOC
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Minimum/Maximum Impacts

THC -2.2%

2.5%

(@)
!I

-5.6%
VOC -2.2%

Energy/CO, -4.7%

6.8%

22.1%

33.9%

10.4%

21.2%

4.7%

39.2%

-18.7%

-30.2%

-11.2%

-18.2%

-7.5%

-36.8%

CACC from Baseline Wiedemann from Baseline
Min Max Min Max

15.4%

17.6%

10.6%

14.8%

5.9%

17.3%

O CACC scenario shows mostly benefits from baseline
= CO and PM2.5 only have reductions

O Wiedemann scenario without oscillations often has disbenefits
= Possible benefits and disbenefits are approximately equal for NOx, VOC, and Energy/CO2
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Conclusions and Future Work

Q Results

Automated vehicles generally show less braking, leave less headway, and have
less fluctuations in speed and acceleration than baseline

CACC has less of an effect on energy and emissions in freely flowing traffic
= Wiedemann oscillation smoothing does not produce much benefit

= DLL needs to be thoroughly tested and validated
QO Next Steps

Vary traffic volumes to simulate more heavily congested scenarios
= Experiment with different penetrations of CACC-enabled vehicles

Investigate lane changing capabilities to accommodate merging
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Discussion

0 Modeling Recommendations

Update tools to reflect connected and automated vehicle (CAV) technologies

o Integrate CAV technologies into MOVES driving behavior

o Add custom operating mode distributions for regulatory analysis

Q Broader Issues

Travel behavior
o Shared vehicles
o Shared trips
o Effect on VMT
o Parking
Vehicle operations
o Drivetrain technologies (fossil fuel vs. electric)
o Emission sources (mobile vs. stationary)
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